
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 11. NOVEMBER 1989 1347

Trace Analysis for Conformance and
Arbitration Testing

Abstract-There are two aspects to testing: 1) the selection of appro-
priate test inputs and 2) the analysis of the observed interactions of the
implementation under test (IUT) in order to determine whether the
observed input/output trace conforms to the IUT’s specification. The
paper analyzes the second aspect with particular attention to testing of
communication protocol implementations. Various distributed test ar-
chitectures are used for this purpose, where partial inputloutput traces
are observable by “local observers” at different interfaces. The error
detection power of different test configurations is determined, based
on the partial trace visible to each local observer and their global
knowledge about the applied test case. The automated construction of
trace analysis modules from the formal specification of the protocol is
also discussed. Different transformations of the protocol specification
may be necessary to obtain the “reference specification” which can be
used by a local or global observer for checking the observed trace. This
checking possibly involves the “nondeterministic execution” of the
reference specification. Experience with the construction of an arbiter
for the OS1 Transport protocol is described.

Zndex Terms-Communication protocols, conformance testing, dis-
tributed systems, formal specifications, protocol testing, testing, test
oracle, test result analysis.

I. INTRODUCTION
WELL-KNOWN problem in system testing is the re- A alization of a reference, sometimes called “oracle, ”

which determines whether a given interaction sequence
observed during the test of an implementation under test
(IUT) is valid or not. Such an oracle must clearly be re-
lated to the specification of the IUT. This paper deals with
the construction of such oracles, and their use in the pro-
tocol testing process.

In the area of communication protocol development and
implementation, the protocol specification has an impor-
tant role to play [7]. It is the basis for the protocol imple-
mentations in the different systems which are designed to
communicate with one another, and helps for the selection
of test cases and the analysis of test results, For the de-
scription of OS1 protocols and services, the use of formal

Manuscript received March 3 1, 1987; revised June 30, 1988 and June
2, 1989. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

G.v. Bochmann is with the Departement d’hformatique et de Recherche
Operationnelle, Universite de Montreal, Montrial P.Q. H3C 3J7, Canada.

R . Dssouli was with the Departement d’lnformatique et de Recherche
Operationnelle, Universite de MontrCal, Montreal, P.Q. H3C 3J7, Canada.
She is now with Mohamed ler University, Oujda, Morocco.

J . R. Zhao was visiting the Departement d’lnformatique et de Recherche
Optrationnelle, Universite de Montrtal. Montrial, P.Q. H3C 357. Canada.
She is with Tsinghua University. Beijing, People’s Republic of China.

IEEE Log Number 8930503.

specifications is seriously considered [29]. The availabil-
ity of such specifications make it possible to apply formal
methods to the testing of protocol implementations [4].

We explore in the paper a testing approach where the
concern for selecting the appropriate test input provided
to the implementation under test (IUT) is separated as
much as possible from the analysis of the observed output
[l l] . We have therefore the following two concerns in
relation with the testing of an implementation:

1) the selection of the test cases, and
2) trace analysis, that is, the determination whether the

trace of input and output interactions observed during a
test conforms to the specification.

The first concern is important since the applied test in-
put determines to a large extent what kind of malfunctions
can be detected.

The second concern is important since it will provide
the verdict as to whether a faulty behavior was found in
the IUT (oracle function).

The two concerns are not independent of one another.
On the one hand, the selection of test cases should take
into account the detection of the possible errors that are
foreseen in the underlying fault model through the obser-
vation of the IUT’s output. On the other hand, the correct
reaction of an IUT to a given test input can not always be
predicted, either due to a nondeterministic test environ-
ment, or because the specification admits several different
behaviors for the IUT. The later parts of the test input
may depend on outputs received during the initial part of
the test(s).

We assume in the following that the trace analysis is
performed in a manner independent of the specific test
input applied. While the validity of an output usually de-
pends on previous test input, we assume that a trace anal-
ysis module is available which is based on the IUT spec-
ification, independent of the test case to be executed. (We
note, however, as discussed below, that the error detec-
tion power may often be improved if knowledge about the
applied test input can be taken into account.)

We take the view that the selection of test cases should
be separated from the problem of deciding whether the
IUT behaves according to the specification for a particular
test case. As described in this paper, the second aspect
can be automated if a formal specification of the IUT is
available. In the case that such a specification is not avail-
able, which is the case in most protocol and other soft-
ware development projects, the test cases usually include

0098-5589/89/1100-1347$01.00 @ 1989 IEEE

1348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. I I . NOVEMBER 1989

explicitly the allowed output expected from the IUT dur-
ing test execution. This is a duplication of the information
given in the specification. It is therefore desirable to val-
idate the test cases in respect to the system specification.
However, this is difficult to do if the system specification
is written in an informal language. In the case that a for-
mal system specification is available, test cases can be
validated against it using an approach similar to the trace
analysis described in this paper.

While the above considerations apply not only to com-
municate protocols, but to the problem of software de-
velopment in general, protocol testing has certain partic-
ularities which relate to the distributed nature of the
implementations. Various distributed test architectures
[21] are reviewed in Section 11. In most of these architec-
tures, the test system is partitioned into several compo-
nents, each accessing a local test control and observation
point (TCOP) which allows only partial control and ob-
servation of the IUT.

The possibilities of trace analysis in such distributed
test architectures, and the limitation of the error detection
power is discussed in Sections 111 and IV. The problem
of deriving the appropriate trace analysis module for a
given test architecture and protocol specification is ad-
dressed in Section V. The experience with an example of
this approach is presented in Section VI, which deals with
trace analysis for the arbitration testing between two OS1
Transport protocol implementations. Section VI1 contains
the conclusions and a discussion of the relevance of trace
analysis to OS1 conformance testing.

11. TEST ARCHITECTURES
As shown in the layered protocol architecture of Fig.

1, a protocol entity has essentially two points through
which it interacts with its environment, namely the upper
and lower local service interfaces, sometimes called “ser-
vice access points” (called USAP and LSAP in Fig. 1).
For a protocol entity of layer N , these are the service ac-
cess points for layer N and (N - l) , respectively. In a
local test environment, as shown in Fig. 2, the IUT (which
is assumed to represent a protocol entity of layer N) is
directly controlled and observed by the test system through
these two access points. They are the test control and ob-
servation points (TCOP’s), which in general are the in-
teraction points through which the test system (or parts of
it) interact(s), directly or indirectly, with the IUT.

In addition to this local test architecture, which corre-
sponds to traditional software testing, the OS1 standard-
ization community has identified 1211 a number of so-
called external test architectures for which at least part of
the test system resides outside the system containing the
IUT, which is called “system under test” (SUT). They
are included in the following architectures considered in
this paper:

1) Distributed Test Architecture: As shown in Fig. 3,
the test system is divided into so-called upper and lower
testers which access the upper and lower service inter-
faces of the IUT, respectively. The lower interface is ac-

Protocol
e n t l t y 2

(layer N)

Protocol
e n t l t y 1

(layer N)

LSAP

underlying communication serv ice

(layer N- I)

~ _ _ _ _ _ _ ~

Fig 1 Layered protocol architecture

tester r:;..I
:

Fig. 2 . Local test architecture.

Upper t e s t e r

Lower t e s t e r

USAP

I I UT I
RSAP LSAP

underlying communlcatlon service
~

Fig. 3 . Distributed test architecture.

cessed over distance and indirectly through the underlying
communication service.

2) Remote Test Architecture: This corresponds to the
distributed test architecture where only the lower tester is
used. Instead of the upper tester, the system under test
may include a stack of several protocol layers above the
layer being tested.

3) Coordinated Test Architecture: This is a distributed
test architecture where some form of coordination be-
tween the lower and upper testers is established through
the exchange of messages according to a so-called test
coordination protocol through a (possibly separate) com-
munication channel between the upper and lower testers.
A particular case is the so-called ferry architecture shown
in Fig. 4 [23], [30] where all interactions at the upper
interface of the IUT are exchanged with the remote test
system which therefore controls and observes both inter-
faces, however indirectly.

BOCHMANN CI al.: TRACE ANALYSIS I349

Test Sys tem I

I I
Fig. 4. “Ferry” or “astride” test architecture.

user I user 2

A r b l t e r

Protocol
e n t i t y I trace

flit

Protocol
e n t i t y 2

I
I Underlvlno comrnunicatlon service I

~~

Fig. 5 . Test architecture with arbiter.

4) Architecture f o r Arbitration Testing: The architec-
ture of Fig. 1 can be used for interoperability testing be-
tween two different implementations of the same proto-
col. If it is not known which implementation exhibits a
deviation from the protocol specification, it is possible to
introduce an observer, sometimes called “arbiter,” as
shown in Fig. 5, which observes the exchange of protocol
data units (PDU’s) between the two implementations in
both directions and should detect any deviations from the
protocol specifications. As only the exchanged PDU’s are
observed (and not the interactions at the upper interfaces
of the implementations), the error detection power of the
observer is equal to the case of the remote testing archi-
tecture, although the application of specific test cases is
more difficult than in the latter case.

In each of the testers involved in the above architec-
tures, a distinction between aspects of test case selection
and trace analysis can be made, as indicated in the figures.
It is noted that an arbiter, as shown in Fig. 5 , only realizes
the trace analysis function, while the aspect of test case
selection is realized within the interworking systems by
the users of the communication protocol. The arbiter
should have a minimal impact on the communication be-
tween the interworking systems (compare Figs. 5 and l).
This is satisfied, for example, in the context of a local
area network where an observer in one station may ob-
serve the traffic between the other stations [2], [20], if a
suitable modification to the network access module is

Upper Tester

SAP5

P54

Lower Tester P53

5AP3b SAP3a

I 553

Fig. 6 . Example of multilayer test architecture

made. The case of arbitration for higher layer OS1 pro-
tocols is discussed in Section VI.

Except for the remote test architecture, all test archi-
tectures above assume that the upper interface of the pro-
tocol IUT is accessible for testing purposes. If this is not
the case, either the remote test architecture or a so-called
“multilayer” test architecture must be used. Fig. 6 shows
a particular example.

111. LOCAL OBSERVERS AND THEIR REFERENCE
SPECIFICATION

Ideally, the trace of observed interactions performed by
the IUT during a test is verified by global and direct ob-
servation at the interfaces of the IUT, as possible for the
local test architecture shown in Fig. 2. An error is de-
tected if the observed trace t is not a valid trace according
to the specification S of the IUT, which we write “ t does
not conform to S.” All cases of erroneous behavior gen-
erated by the IUT can in principle be detected in this man-
ner, as long as appropriate test inputs are chosen that lead
the IUT to exhibit these behaviors. As discussed in the
Introduction, this paper does not address the issues related
to the selection of such test cases. In order to verify real-
time properties of the IUT, such as related to timer spec-
ifications, it is necessary to either analyze the interactions
of the IUT in real time, or record, within the trace file,
the real time of each interaction in the form of a time
stamp. Possible deadlocks of the IUT can be detected by
noticing that certain output interactions, expected accord-
ing to the specification, are missing.

An observer watching only the interactions at one of the
interfaces is called a local observer. We call “Oi” the
local observer at the interface i . It observes only a partial
trace which is obtained from the global trace by deleting
all interactions not taking place at the interface i. We write
“Pi(t)” for this trace, where “Pi” stands for “projection
onto interface i ” .

The observer compares the observed local trace with a
specification which we call the reference specification of
the observer. In the case of the test architecture of Fig. 2,
the reference specification for a local observer at one of
the interfaces can be obtained from the specification of
the IUT by projection on the interface in question; in the
case of the local observer at the remote service access

I350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. I I . NOVEMBER 1989

point (RSAP) of Fig. 3, its reference specification can be
obtained through the composition of the specifications of
the IUT and the underlying communication service and
subsequent projection onto the interface RSAP (see for
instance [191 or [8] for a discussion of the concept of pro-
jection). In general, the reference specification of an ob-
server is a specification which determines which traces
(observed at the interface in question) conform to the sys-
tem specification. It can be obtained from the protocol
specification of the IUT and the test architecture [l l] ,
[131, as explained below.

In this paper we use the notation of LOTOS [18] for
describing the composition of system modules and pro-
jections. A system module is represented as a Lotos pro-
cess of the form

process-name [list of interfaces]

and the composition of two modules M 1 [11, 121 and M2
[I2, 13) interacting over the common interface I2 is writ-
ten as

hide I2 in (M1 [I l , I21 1 [I21 1 M2 [I2, 131)

which implies that I2 is not accessible to any other mod-
ules in the system. Similarly, the projection of the module
specification M 1 onto the interface I1 is written as a Lotos
expression of the form

hide I2 in M1 [I l , I21
which means that the interactions at interface I1 remain
visible and must conform to the specification of M1, while
at I2 any interaction may occur at any time (but not visible
to the projected specification).

Using this notation, the reference specification RSUT
for the observer at the upper interface of the IUT (some-
times called “upper tester,” UT, see Fig. 3) can be writ-
ten as

RSUT [USAP] : = hide LSAP in SPECIUT [LSAP,

where SPECIUT is the protocol specification for the IUT
and if one assumes that the underlying communication
service does not restrict the possible interactions at the
lower interface of the IUT. Similarly, the reference spec-
ification RSLT for the lower tester of Fig. 3 can be written
as

USAP]

RSLT [RSAP] : = hide LSAP, USAP in
(SPECIUT [LSAP, USAP] I [LSAP] I
LS [RSAP, LSAP])

where LS is the specification of the underlying commu-
nication service. Another example is the multilayer test
architecture of Fig. 6. Here, the reference specifications
for the local observers at the interfaces SAPS and SAP3b
observing indirectly the implementation of the protocol
PS3 can be written as

RSUT34 [SAPS]: =hide SAP4, SAP3a, SAP3b in
(SS3 [SAP3b, SAP3a]

I [SAP3a] I PS3 [SAP3a, SAP41
I [SAP41 1 PS4 [SAP4, SAPS])

and
RSLT34 [SAP3bl : = hide SAP3a, SAP4, SAPS in

(SS3 [SAP3b, SAP3a]
I [SAP3aIl PS3 [SAP3a, SAP41
I [SAP41 I PS4 [SAP4, SAPS])

IV. ERROR DETECTION POWER OF LOCAL OBSERVERS
A . Limited Error Detection Power

In general, the error detection power of a local observer
is less than perfect. It is conceivable that the IUT exhibits
a faulty behavior, say a trace t which does not conform to
S , the specification of the IUT, but a local observer does
not detect an error since the projection of t on the ob-
served interface results in a local trace which is allowed
according to the reference specification of the observer.

As an example, we consider the simplified OS1 Trans-
port protocol class 2 [22]; the state transition diagram of
Fig. 7 defines the allowed execution orders of service
primitives, and sending and receiving of protocol data
units (PDU’s). An allowed execution trace is, for in-
stance, the following

t l = < TCONreq, s-CR, r-CC, TCONconf,
TDATAreq, s-DT, . . . >

where the service primitives TCONreq, TCONconf, and
TDATAreq are executed at the “upper” interface USAP
(see Fig. 2), and the sending and receiving of the PDU’s
CR, CC, and DT are executed at the “lower” interface
LSAP. The notation “s-CR” (or “r-CR”) means the
sending (or reception) of the connect request (CR) PDU.
The local observer OusAp at the upper interface USAP
would therefore observe the trace

< TCONreq, TCONconf, TDATAreq, . . . >

while a local observer OLsAp at the lower interface would
observe the trace

< s-CR, r-CC, s-DT, . . . >.

Let us consider a fault where the IUT does not send the
required CR PDU. The resulting global trace would be

t2 = < TCONreq, TCONconf, TDATAreq,
S-DT, . . . >.

This fault would not be detected by the local observer
OusAp, since it would observe a valid local trace, in fact
PusAp (t2) = PusAp (t l) . However, this fault would be
detected by a local observer OLsAp, since it would observe
the trace

< S-DT, . . . >

which is not allowed according to PLsAp (S) .
It is important to note that local observers alone do not

detect all errors, at least in most cases. While the above
error would be detected, the following error would not be
detected by OusAp nor OLsAp. We assume that the IUT

BOCHMANN er a l . : TRACE ANALYSIS 1351

TCONreq. s-CR

r -DT. TDATlnd
TDATreq, 5-DT

Fig. 7 . State diagram of a transport protocol specification.

sends the CR PDU, but invokes the TCONconf before,
thus leading possibly to the trace

t3 = < TCONreq, TCONconf, s-CR, r-CC, TDATAreq,
S-DT, . . . >

a) Diagnostic Information Transfer: Each local ob-
server Oi indicates whether it detected an error based on
its reference specification. This corresponds to the dis-
cussion of the example above, where an error would be
found in the trace t2, but not in the traces t3 nor t4.

b) Transfer of Local Trace: Each local observer Oi
provides the global analyzer with the locally observed
trace ti, that is the sequence of observed interactions and
their parameter values. Such an approach can be realized
through a test architecture as shown in Fig. 4. With this
approach, many data flow related faults can be detected,
such as the error in trace t4.

c) Transfer of Local Trace with Timing Informa-
tion: In addition to the information provided under point
b), it is assumed that the local observers have synchro-
nized clocks which are used to indicate for each observed
interaction the real time of its occurrence. If the clocks
are well enough synchronized, this may allow the global
observer to detect the error in trace t3.

Information transfer at level c) provides the global ana-
lyzer with complete information about the observed inter-
actions. Therefore all errors can be detected with this
methods, provided the timing information is precise
enough. However, the realization of synchronized clocks
in a distributed environment is not easy (see for instance
[16]). Therefore information transfer at level b) is used
more frequently.

Level b) communication allows the detection of many
sequencing errors, namely when the sequences observed
at the two sides are inconsistent. An example is the trace

This global trace has the same local traces as the valid
trace t l . Therefore no error is detected.

While the above examples relate to the order of exe-
cution of interaction primitives, other errors may relate to
the interaction parameters and the data flow between them.
The analysis of possible data flows within the specifica-
tion can also be used for deriving appropriate test input
for covering data flow related faults [27]. An important
property of communication protocols related to data flow
is the reliable transfer of user data. For the Transport ex-
ample considered above, this means that the user data pa-
rameter of the TDATAreq primitive, in traces such as t l ,
must be equal to the user data parameter in the corre-
sponding data (D T) PDU. An example where this is not
true is the faulty trace (we assume x l not equal to x2)

t4 = < TCONreq, s-CR, r-CC, TCONconf,
TDATAreq(x l), s-DT(x2), . . . > .

Most data flow relations, such as the one above, are not
local properties, that is, their violation cannot be detected
by local observers.

B. Improving the Error Detection Power of Local
Observers

Error detection power of local observers can be in-
creased by the following two approaches (see also [111-

1) Communication Between Observers and Global, In-
direct Observation: In most test systems, there is some
global instance which determines the test input to be ap-
plied, and provides for the detection of errors. We assume
that this global error detection function is provided by a
so-called global analyzer which bases its error detection
diagnostic solely on information received from the local
observers. Several level of information transfer from the
local observers to the global analyzer can be considered:

1131 1.

t5 = < TCONreq, s-CR, r-DR, TCONconf, . . . >,
where disconnection occurs at the “lower” interface,
while a connection is established at the “upper” side.
Even sequencing errors where no such inconsistency ex-
ists, such as in trace t3, may be detected if data flow re-
lations are taken into account. If, for instance, the TCON-
conf contains a parameter value which depends on a
parameter value received in the CC PDU, the sequencing
error of t3 should usually be accompanied with an error
in the TCONconf parameter, since the IUT evoking the
TCONconf too early has not yet received the CC PDU for
correctly determining the TCONconf parameter.

2) Test Case Specific Trace Analysis: The second ap-
proach to improving the error detection power is to pro-
vide each local observer with information about the test
input supplied at the other interfaces. For instance, if the
local observer OLsAp knows in advance the user data to be
applied at interface USAP in the TDATAreq interaction,
it will be able to detect the error in trace t4. This approach
is the basis for many standardized OS1 test cases [2 11 used
in the distributed test architecture of Fig. 3. However,
this approach can not be used for random testing where
the test input is (to a certain extent) randomly chosen,
since in this case the test input is not known in advance.

Formally, the additional knowledge of the local ob-
server can be expressed by its reference specification. This
specification can take into account the known behavior of

1352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. I I . NOVEMBER 1989

the test modules providing input to the other interfaces.
For example, if UTTl is the specification of the upper
tester for a given test case using the architecture of Fig.
3, the reference specification for the lower tester at the
interface RSAP can be written as

RSLTTl [RSAP] : = hide LSAP, USAP in
(UTT1 [USAP]

1 [USAP] 1 SPECIUT [LSAP, USAP]
I [LSAP] I LS [RSAP, LSAP])

which in general accepts less traces than the reference
specification RSLT given in Section 111.

The semiadaptive testing often proposed for protocol
conformance testing [lo], [3] also takes advantage of this
approach. In this case, a complete test suite consists of a
number of predetermined test cases. For each test case,
the observer function at each of the interfaces knows the
test input to be applied at the other interface, and this is
taken into account for the detection of errors. The next
test case to be executed is determined by the test system
based on the global results of test cases previously exe-
cuted. Communication between the different parts of the
test system are therefore only required to communicate
the local test diagnostics and the identity of the next test
case to be executed, but not the details of its definition.
Various methods for such test coordination procedures
have been described [241, 131, 1211.

C. Influence of the Underlying Communication Service
and Multilayer Protocol Testing

In the case of most testing architectures, such as those
shown in Figs. 3, 4 , 5 , and 6 , the error detection power
of the observers is further decreased due to the fact that
the “lower” interface of the IUT are not observed di-
rectly, but only through an underlying communication
service. The latter usually implies delays and possible
queuing of messages in transit. Even if the communica-
tion service has the FIFO property (in a given direction,
messages are received in the same order as they were
sent), the order of interactions observed may be different
from the order they occurred at the IUT interface due to
message cross-over within the communication service.

In the case of multilayer protocol testing as shown in
Fig. 6 , similar cross-overs of interactions may occur for
the indirect observation of the upper service primitives of
the PS3 protocol entity observed at the SAP5 interface,
and the lower service primitives of the PS4 protocol entity
observed at the remote SAB3b interface. However, the
situation is more difficult to analyze since the behavior of
the protocol entity through which these interactions are
observed is usually much more complicated than the un-
derlying communication service. In addition, it can usu-
ally not be assumed that the implementation of this entity
is without faults. Therefore, in practice, the different pro-
tocol layers are usually tested in conjunction, using the
reference specifications RSUT34 and RSLT34 defined in
Section 111.

V . DERIVING A TRACE ANALYSIS MODULE FROM THE

REFERENCE SPECIFICATION

A . General Considerations

In the section above, various configurations of local ob-
servers and their error detection power were discussed.
Each observer compares the locally observed (partial)
trace with its reference specification in order to determine
whether an error can be detected. The discussion in this
section deals with the construction of a trace analysis
module which actually does this comparison. The trace
analysis module should be derived from the reference
specification, and should be in such a form that it reads
the observed trace, one interaction after the other, and
reports, after each interaction considered, whether an er-
ror occurred up to this point.

If the reference specification is given in an executable
form, it may be used for trace analysis by having it exe-
cuted in a simulated manner. However, the following
points must be taken into account:

a) Any output interaction specified by the reference
specification corresponds to an input to the trace analysis
module received from the IUT. The trace analysis module
verifies that the received parameter values are equal to the
parameter values specified for the output in the reference
specification.

b) The reference specification may be nondeterminis-
tic, in the sense that a given trace may lead to more than
one internal “state” of the specification. The allowed
subsequent interactions may be different for these differ-
ent states. Therefore the reference specification must be
simulated in a nondeterministic manner, considering all
possible branches in parallel. Only if for the next inter-
action of the observed trace, there is no branch for which
this interaction is possible, then an error is detected. In
addition, any branch for which the next interaction is not
possible may be deleted for further consideration in the
nondeterministic execution of the reference specifica-
tion. The interested reader is referred to [15] and [28] for
further discussion and examples.

The following subsections discuss the derivation of an
analysis module for different kinds of reference specifi-
cations.

B. Finite State Machine Specijications

In the case that protocol specifications are given as fi-
nite state machines, the construction of trace analysis
modules is relatively straightforward. The projection op-
eration Pi is performed by deleting from the state diagram
all input/output labels which do not occur at the interface
i. For example, the Transport protocol specification of
Fig. 7 leads to a reference specification for the “lower”
observer OL,y.Ap shown in Fig. 8. In general, the specifi-
cation may be simplified by reducing the state machine to
an equivalent form [11, thus avoiding spontaneous tran-
sitions without output (i .e. , transitions with no input or
output occurring at interface i) . The composition opera-

BOCHMANN et al.: TRACE ANALYSIS I353

S-AK -DT. 5-DT
r -AK

Fig. 8 . State diagram of a reference specification for lower observer

tion is also relatively simple [19J; it may, however, lead
to a certain state space explosion.

In order to transform outputs to inputs (see point a)
above and obtain a state diag: Im where all transitions have
a single input interaction, tr, mitions with both input and
output (such as the transition labeled “r-DR, s-DC” in
Fig. 8) are split into two transitions and an intermediate
state. Then all output interactions are converted to input.
If the resulting state machine is deterministic, error de-
tection transitions can be added as follows. For each state
of the machine and each input for which the machine does
not include a transition, an error detection transition
should be included leading to a “detected error” state.

If the resulting state machine is not deterministic, it may
either be converted into an equivalent deterministic ma-
chine [l], or it may be executed in a nondeterministic
manner, as described under point b) above.

C. Full Specijications Using a Formal Description
Technique

Finite state machines have a limited modeling power.
So-called formal description techniques (FDT) have been
developed for writing full specifications of OS1 commu-
nication services and protocols [29]. It is an advantage of
formal protocol specifications written in an FDT, that
trace analysis modules for local observers can be derived
from such specifications using similar transformations as
those described for finite state machines above.

The techniques Estelle 1141 and SDL [25] are based on
an extended finite state machine model which allows the
specification of a system of interconnected extended state
machines. The different machines communicate through
the exchange of messages. For the derivation of trace
analysis modules, the transformations described in Sec-
tion V-B can be applied with proper consideration of in-
teraction parameters. This means that during the transfor-
mation from output to input interactions, as described
above, a condition must be associated with the new input
transition which verifies that the received interaction pa-
rameters are equal to the values specified for the output
in the reference specification. The transformation from a
nondeterministic specification into a deterministic one is

not easily feasible for FDT specifications; therefore the
trace analysis module has to execute the resulting speci-
fication in a nondeterministic manner, as explained under
point b) in Section V-A.

In the case of the LOTOS language [181, the situation
is similar. However, the rendezvous interactions are not
distinguished as input and output; instead individual pa-
rameters of these interactions may be input or output, as
indicated by the notation “?” or “!”, respectively.
Therefore the transformation from output to input must be
applied to each output parameter of an interaction. This
means that, for each occurrence of “! (value expres-
sion)” within the parameter list of a Lotos action prejx
representing an interaction, the occurrence should be re-
placed by the text ‘‘?v:rype-id” where i) is a new param-
eter identifier and type-id is the identifier of the data type
(Lotos sort) of the (value expression). In addition, the
action prejx should be associated with the guard “[v =
(value expression) I ” , possibly to be combined through
a logical and with other guards already pre: :nt. The ob-
tained Lotos specification should be executed in a simu-
lated nondeterministic manner, as explained in Section V-
A. An existing Lotos interpreter [171 has been adapted for
this purpose [9].

VI. A PRACTICAL EXAMPLE: TRANSPORT ARBITER

A. Arbitration Testing

In the case of arbitration testing, as shown in Fig. 5,
an arbiter observes the PDU’s exchanged between two
protocol implementations with the purpose of detecting
any cases where one of the implementations (IUT’s) does
not conform to the protocol specification. Since both im-
plementations must be checked, we suggest an internal
structure for the arbiter which contains two trace analysis
modules, one for each observed IUT, as shown in the
figure. The observed trace of PDU’s, received from the
different IUT’s, is recorded in a trace file for eventual
manual inspection or later processing. In addition, the or-
acle function is performed on the observed trace sepa-
rately for each IUT. The two trace analysis modules check
whether the observed trace is in contradiction to the spec-
ification of the corresponding IUT.

For each of the two trace analysis modules, the refer-
ence specification is equal to the one for a lower tester
(RSLT) in the distributed test architecture (see Fig. 3) as
defined in Section 111. This takes care of the possible
queuing of PDU’s within the underlying communication
service. Therefore only the properties visible at the
“lower” interface of the IUT’s can be checked by the
arbiter. Many protocol properties, such as correct transfer
of user data for instance (see also trace t4 in Section
IV-A) cannot be checked. Many of these properties could,
however, be verified by checking the correct operation of
the next higher protocol layer which relies on thes,: prop-
erties for its correct operation.

It is assumed in the following that the observed PDU’s
are exchanged through a reliable communication service.

1354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. I I . NOVEMBER 1989

This assumption simplifies the analysis of protocol con-
formance. If errors may occur within the underlying com-
munication service, it is difficult to decide whether an er-
ror observed in a given PDU is due to a transmission error
in the lower service or to a faulty behavior of the IUT
from where the PDU originated.

B. Constructing an Arbiter for the OSI Transport
Protocol

We have applied the principles discussed in the sections
above to the implementation of an arbiter for the OS1
Transport protocol classes 0 and 2. The reference speci-
fication for trace analysis was essentially derived from a
formal specification of the protocol (written in an Estelle
dialect) which was previously used for deriving an imple-
mentation [5] . The transformations performed for this
purpose are similar to those discussed in Section V , and
take also into account the interaction parameters and ad-
ditional state variables. These transformations were per-
formed by hand; no automated tool was available for this
purpose. It turned out that the resulting specification of
the trace analysis module was deterministic, which sim-
plified its execution.

The arbiter was implemented using a semiautomated
approach [5] . The arbiter was first specified in Estelle.
After this specification was sufficiently completed, it was
automatically translated into Pascal and combined with
run-time support routines, including in particular an in-
terface to the underlying Network service (provided by an
X.25 network) and functions for operator control and
copying the trace onto a file for possible later inspection.

The Estelle module structure of the arbiter is shown in
Fig. 9(a). The Network-medium provides a Network ser-
vice access point. The Manager module manages the two
Network connections to the respective computers contain-
ing the two IUT’s. It also includes a PDU decoding func-
tion and writes the trace file. The decoded PDU’s are
passed to each of the two Side modules which perform
the trace analysis for the two respective IUT’s. The in-
ternal structure of the Side modules is shown in Fig. 9(b)
and is closely related to the structure of the original for-
mal protocol specification. Each AP module checks a sin-
gle Transport connection. Since the class 2 protocol al-
lows for multiplexing, several such connection may be
established over the same Network connection.

The Mapping module looks after multiplexing and per-
forms a number of checks on the observed PDU’s. A pro-
cedure Sending-check is derived from the original pro-
tocol specification. It checks conditions for the PDU’s sent
by the corresponding IUT. A Receiving-check proce-
dure does the same tests for the PDU’s to be received by
the corresponding IUT. This allows the arbiter to know
whether the corresponding IUT is expected to send an
ERR PDU in response to an erroneous PDU received.

Each AP module is an extended finite state machine
derived from the AP module of the original protocol spec-
ification. Its state diagram is shown in Fig. 10. Note that
the transitions leading to the “detected error” state (see

trace

Manager 1 P opera tor

Network-medium LzJJ

Fig. 9. (a) Estelle structure of arbiter. (b) Estelle structure for side module
of arbiter.

\ +-AK 1
*ED

!+-EA !
’,$+ER i! v

-DR +DR

<: closed .:> A-.-- - __-

Fig. 10. State transition diagram for analysis module of transport arbiter.

Section V-B) are not shown on the diagram; the states
error, wfCC-er, and wftresp-er in the diagram are
caused by valid transitions of the protocol machine which

BOCHMANN EI a l . . TRACE ANALYSIS 1355

can be reached when the IUT receives certain invalid
PDU’s.

In addition to using the formal protocol specification
for deriving the trace analysis rules, we also studied the
OS1 standard [22] in order to validate these rules. It turned
out that there was a small number of inconsistencies be-
tween the formal specification and the standard. It is not
easy to make a comparison of a formal specification with
a standard written in natural language. It would therefore
be useful if recognized and validated formal specifications
of protocol standards would be available.

Several different Transport protocol implementations
were tested using the configuration of Fig. 5 [6]. It was
found that the arbiter was useful for detecting a large part
of the errors in the implementations (some of the errors
were not visible at the lower service interfaces). It seems
that an arbiter can be especially useful in the following
cases:

1) capturing the errors which occur occasionally or
cannot be easily reproduced,

2) capturing errors which occur only after interactions
have taken place repeatedly for a long time,

3) recording unexpected events which come from the
lower layer and could result in a misbehavior of the IUT,
4) monitoring the execution of two implementations

which have been tested separately and have just been put
into use, and

5) being used as a first filter for debugging before more
costly tests are undertaken.

VII. CONCLUDING DISCUSSION
There are two aspects to testing: 1) the selection of ap-

propriate test inputs and 2) the analysis of the observed
interactions of the implementation under test (IUT) in-
cluding input and output in order to determine whether
the observed trace is conform to the IUT’s specification.
While standardized test suites for OS1 communication
protocols combine these two aspects into a single test case
description, this paper explores the advantages of keeping
the two aspects separate.

This paper explores the automated analysis of the ob-
served interaction trace in respect to the IUT’s specifica-
tion. It is clear that such an analysis can only be auto-
mated if the specification is given in a formal, machine-
processable form. This is one of the reasons why the de-
velopment of formal descriptions of OS1 protocols and
services in a formal description technique (FDT) is ad-
vocated. They cannot only be used for automating the
implementation testing process, as described here, but can
also play a major role during the validation of the protocol
design, and can be used for partly automating the imple-
mentation process [4].

It is important to note that most test architectures used
for protocol implementation testing allow only for partial
control and observation of the IUT interactions [131. In
most situations, one or several local observers record and
analyze the partial interaction trace visible at the interface
which they observe. Many important error types cannot

be detected by such local analyzers unless some global
information is introduced. There are essentially two pos-
sible approaches:

I) Staric Knowledge: Each local analyzer has some a
priori knowledge about the applied test input at the other
interfaces; or

2) Dynamic Knowledge: Some global analyzer obtains
a copy (possibly with real-time information) of the partial
traces observed at the different interfaces.

Both approaches lead to satisfactory error detection
power.

For established OS1 protocol standards, such as X.25,
FTAM, or MHS (X.400), a number of standard test cases
are defined by interested groups and/or standardization
bodies. These test cases not only include the inputs to be
applied to the IUT, but also describe the possible outputs
observed, and for each possible output whether its occur-
rence means a successful test, the detection of an error,
or an inconclusive test outcome. The latter information is
also provided by the trace analysis discussed in this paper.
Nevertheless, the automated trace analysis based on the
specification of the IUT is useful in this area for the fol-
lowing purposes.

First, it can be used to validate the predefined test cases.
This is an important point, since it is difficult in general
to check that the error detection diagnostic given by a pre-
defined test case, such as those used for OSI, is conform
to the protocol specification. In fact, the automated trace
analysis described in this paper could be used to validate
a predefined test case by comparing the error detection
diagnostic given by the test with the diagnostic of the au-
tomated trace analysis, and this for all the traces foreseen
by the test case [9].

Secondly, automated trace analysis can be used in sit-
uations where predefined test cases cannot be used, for
example:

1) During conformance testing of an implementation,
it is often desirable to execute tests which have not been
foreseen by the implementor. New test cases may be se-
lected for this purpose. A similar situation occurs in hard-
ware testing where test cases are sometimes selected ran-
domly.

2) While standard OS1 conformance test cases are de-
fined for verifying conformance of an implementation in
respect to the protocol specification, each implementation
usually has to satisfy additional requirements which are
system-specific. Specific test cases for verifying these re-
quirements must therefore be designed and executed.

3) Another case where the standard OS1 conformance
test cases cannot be used is arbitration testing which is
performed when two implementations, already well
tested, do not intenvork properly. A test architecture as
shown in Fig. 5 is normally used, and the applied test
input is not standardized.

4) Finally, the standard test cases are usually not used
for the initial debugging of a new implementation. In this
early implementation phase, it is often desirable to be able
to execute ad hoc test cases and verify the behavior of the

13.56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. I I . NOVEMBER 1989

implementation in these situations. Similarly, specific
tests may be selected during conformance resolution test-
ing [2 11 to check particular conformance requirements.

Before closing, it is important to note that the auto-
mated trace analysis discussed here is only useful in de-
tecting a fault in an IUT if the applied test input is able
to lead the IUT into a situation where it exhibits an error
due to that fault. Therefore the selection of appropriate
test input is of prime importance. Although test input can
also be selected based on the system specification (for ap-
plication to communication protocols, see for instance
[26], [27]), it seems that it is very difficult to fully auto-
mate the test selection process. This paper tries to show
that the trace analysis aspect of testing is "orthogonal"
to the test input selection issues, and to explore its auto-
mation based on a formal system specifications. These
principles are not new in the area of hardware design,
however, the point of this paper is the application of these
principles to communication protocols. They may also be
applicable in other software areas.

REFERENCES
A. V. Aho and J. D. Ullman, Principles Compiler De-
s ign. Reading, MA: Addison-Wesley, 1977.
J. M. Ayache, P. Azema, and M. Diaz, "Observer: A concept for
on-line detection for control errors in concurrent systems," in Proc.
9th In t . Symp. FTC, Madison, WI, June 1979.
G.v. Bochmann, E. Cemy, M. Maksud, and B. Sarikaya, "Testing
of transport protocol implementations," in Proc. CIPS Conj . , Ot-
tawa, 1983, pp. 123-129.
G.v. Bochmann, "Usage of protocol development tools: the results
of a survey'' (invited paper), presented at the 7th IFIP Symp. Protocol
Specification, Testing and Verification, Zurich, May 1987.
G.v. Bochmann, G. Gerber, and J . M. Serre, "Semiautomatic imple-
mentation of communication protocols." IEEE Trans. Sofruare E n g . .
vol. SE-13, no. 9 , pp. 989-1000, Sept. 1987; reprinted in Automaric
lmplementution and Conformance Testing of OSI P rorocols. D. P.
Sidhu, Ed. New York: IEEE, 1989.

161 G.v. Bochmann. C. He. D. Ouimet. and R. Zhao. "Protocol testing
using automatic trace anal " in Pro(.. /EL-€ Ctrriciditrti Cori,f: Elrcc
/r irxl trnd Compicrer € n ~ i r t r v ~ r i r i , y , Sept. 1989.

(71 G.v. Bochmann. "Protocol specification for OSI." C o m p i f . Nc+
n.ork.\ r i n d lSDN Sysr.. to be published.

181 S. S . Lam and A. U. Shankar. "Protocol verification via projec-
tions." / € € E Trrtm. S(; f iu~irc , € f i g . . vol. SE-IO. no. 4. pp. 325-342.
July 1984.

[9] G.v. Bochmann and 0. Bellal. "Test result analysis in respect to for-
mal specifications." submitted for publication.

[IO] I . C. Davidson. "The NCC protocol testing service." in Proc.. WorL-
s h o p /ntrot/iictiori of High L e t v l Protoc,ol Srtrridtirrlt j k r OS/
(B N I I A F N O R) , Paris, June 1983. pp. 273-279.

[I I] R . Dssouli and G.v. Bochmann, "Error detection with multiple ob-
servers. ' ' in Proc. /FIP Workshop P roroc.ol Spe t? f i i ,u f io i i , 7(,.\tiri,y,
t ind Vtrlickrtiori. Toulouse. France. June 1985.

[121 -. "Conformance testing with multiple observers." in Pro(.. l F I P
Workshop Prorocnl Sper?f i~~ut io i i , T (~ s t i i i x . trntl Vu/i t lr ir iori . 1986. pp.

[131 R . Dswuli. "Etude dcs methodes de test pour 16's implantations de
protocoles de communication basees sur les specifications for-
melles." Ph.D. dissertation. U n i v . Montreal. 1986.

1141 I S 0 139074. "Estelle: A formal description technique based on an
extended state transition model." 1989.

[IS] C. Jard and G.v. Bochmann. "An approach to testing \pecifica-
lions." J . S\.\t. Soj i i iure, vol. 3. n o . 4. pp. 315-323. Dec. 1983.

1161 L. Lamport. "Time. clocks and the ordering o f events in a distributed
system." Comuiin. ACM. vol. 21. no. 7. pp. 5.58-565. J u l y 1978.

1171 L. Logrippo e t U / . , "An interpreter lor LOTOS: A specification lan-
guage for distributed systems.'' S o f i i i ~ i r r Prtrcrir~c~ r i n d € . tperir i iw.
vol. 18, n o . 4. pp. 365-385. Apr. 1988.

217-229.

[181 IS0 IS8807, "LOTOS: A formal dewription technique." 1989.

[191 P. Merlin and G.v. Bochniann. "On the construction of submodule
specifications and communication protocols," ACM Trtrri.~. Prosyrrrrii.
Ltrri,y. S\..\f., vol. 5 . n o . I . pp. 1-2.5. Jan. 1983.

1201 R . Molva. M . Diaz. and J . M . Ayache. "Observer: A run-tinie
checking tool for local area networks," 5th IFIP Work.\/iop Proroc.ol
SprvYfi(,utiori , Tesriri,y t i r id Veri'j?ctrtioii. Toulouse. 1985.

1211 I S 0 TC97/SC21. DIS 9646/1. and DIS 9646/2. "OS1 Confor-
mance testing methodology and framework. Part I : General Con-
cepts. Part 2 : Abstract Test Suite Specification." 1989.

1221 IS0 TC97 /SC6. IS 8073. "OSI-Connection oriented transport pro-
tocol specification. "

1231 D. Rafiq. R. Castanet. C . Chraibi. J. P. Coursaud. J. Haddad. and
X . Perdu, "Towards and environment for testing OS1 protocols.'' i n
Pro(,. IFIP WorXsliop Prorocd Sprc~ifictrtiori. Ver/jic.tr/ioii t i r id 7e.\r-
i i i ,y . Toulouse. 1985.

1241 D. Rayncr. "A system for testing protocol implementations." Cow
p f . Ncr i t~) rX . s . vol. 6. no. 6. Dec. 1982.

[2 5] CCITT SG XI . Rccomiiiendation Z.100. 1987.
1261 B. Sarikaya and G.v. Bochniann. "Synchronization and specification

iswcs in protocol testing." l E E E Trtiris. Conimiti~.. v o l . COM-32.
n o . 4. pp. 389-395. Apr. 1984.

1271 B . Sarikaya. G.v. Bochmann. and E. Cerny. "A test design nieth-
odology for protocol testing." /€E€ Trciric. Sc;ftii,crrr € r ig . . vol. SE-
13. pp. 518-531. Apr. 1987.

[28] H. Ural and R. L. Probert. "Automated testing of protocol speciti-
cations and their implementations." in Proc. ACM SlGCOMM S w i p . .
1984.

1291 C. Vis\ers. "Formal description techniques for OSI." in Pro(.. lF lP
Co,i,yrr\ \ . I n f h n r i t r r i o r i Proc,es.\ing '86. Amsterdam. Thc Nether-
lands: North-Holland. 1986.

1301 H. X . Zeng and D. Rayner. "Thc impact of the ferry concept o n
protocol te\ting. ' ' in Prorrir~ol Sper?$r~ritiori. Tr,sting u i i d Vt,r-ific~trrion
(I N P Work.\/ iop/. M . Diaz, Ed. Amsterdam, The Netherlands.
North-Holland. 1986. pp. 533-544.

Gregor v. Bochmann (M'82-SM'84) received the
Diploma degree in physics from the University of
Munich, Munich. West Germany, in 1968 and the
Ph D degree from McGill University, Montreal,
P Q , Canada, in 1971

He has worked in the areas of programming
languages, compiler design, communication pro-
tocols, and software engineering and has pub-
lished many papers in these areas He i s currently
a Professor in the Departement d'hformatique et
de Recherche Operationelle, Universite de Mon-

treal, Montreal His present work is aimed at design models for commu-
nication protocols and distributed systems He has been actively involved
in the standardization of formal description techniques for OS1 From 1977
to 1978 he was a Visiting Professor at the Ecole Polytechnique Federdle,
Lausanne, Switzerland. From 1979 to 1980 he was a Visiting Professor in
the Computer Systems Laboratory, Stanford University, Stanford, CA
From 1986 to 1987 he was a Visiting Researcher at Siemens, Munich.

Rachida Dssouli received the "Doctorat d'Uni-
versite" from Universite Paul Sabatier. Toulouse,
France, in 1981, and the Ph.D. degree from Uni-
versite de Montreal, Montreal, P.Q., Canada, in
1986.

She is currently a full Professor at Universite
Mohamed ler, Oujda, Morocco.

J . R. Zhao graduated from the Department of Ap-
plied Mathematics. Tsinghua University, Beijing.
People's Republic of China, in 1965.

She is an Associate Professor of Computer
Center at Tsinghua University. Her current areas
of interest include formal specification and vali-
dation of communication protocols.

